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In this work we investigate the spectra of Laplacian matrices that determine many dynamic properties of
scale-free networks below and at the percolation threshold. We use a replica formalism to develop analytically,
based on an integral equation, a systematic way to determine the ensemble averaged eigenvalue spectrum for
a general type of treelike networks. Close to the percolation threshold we find characteristic scaling functions
for the density of statesrsld of scale-free networks.rsld shows characteristic power lawsrsld,la1 or
rsld,ld2 for small l, wherea1 holds below anda2 at the percolation threshold. In the range where the
spectra are accessible from a numerical diagonalization procedure the two methods lead to very similar results.
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I. INTRODUCTION

Recent studies of nets, ranging from social networks to
power grids and the internet, revealed that in many cases the
degree distributionpk, i.e., the probability that an arbitrary
vertex is connected to exactlyk other vertices, often exhibits
a power law, namely thatpk,k−g holds [1,2]. Networks for
which this relation is fulfilled are calledscale free; scale-free
networks differ from the classical random graphs[3], for
which the distributionpk is Poissonian, and from small-
world-networks[4–9]. Recent works have clarified that the
properties of scale-free networks, in particular percolation,
differ markedly from the classical case[1,2,10–12]. It turns
out that the asymptotic behavior ofpk for k large, the so-
called tail ofpk, which is quantified byg, is fundamental in
differentiating between the distinct classes of behavior: Thus
for g,4 the critical exponents change from the usual values
found for classical graphs[12,13].

Now, the topological properties of a network are reflected
in the spectral properties of its connectivity matrixC: This
matrix is constructed by letting its off-diagonal elementsCik
be 1 if i and j are connected or 0 otherwise; moreover, the
diagonal elementsCii of C are zero. For scale-free networks
it was found that the density of the eigenvalues ofC has a
triangular form with a power-law tail[14–16]. On the other
hand, many problems ranging from the dynamics of ran-
domly branched polymers[19] and the stress relaxation of
near critical gels[20], over random resistor-capacitor net-
works[21] to glassy relaxation dynamics[22], depend on the
LaplacianA; A is connected toC via:

Aik = Sdiko
j=1

N

CjkD − Cik. s1d

A whole series of works based onA were devoted to classi-
cal deterministic and random graphs, such as Cayley trees
(dendrimers), hyperbranched macromolecules, the Erdös-
Rényi (ER) random graph, and bond diluted Cayley trees
[17–29]. Based on the Laplacian, many time- and frequency
dependent observables can be written as integrals overrsld,
the density of eigenvalues ofA: The structure of these ob-
servables is either

Qstd =E
0+

`

dlfst,ldrsld, s2d

or some related form, in whicht is replaced byv. For in-
stance, for random walks, the site averaged return probability
QRstd of a random walker to the origin is obtained with the
choice fRst ,ld=e−lt [22]. Moreover, the mechanical storage
and loss moduli [26,27], the averaged time-dependent
stretching of macromolecules in external fields[26,27], and
the dielectric relaxation functions[30], all obey forms simi-
lar to Eq.(2). We are interested in the dynamic behavior of
random graphs with arbitrary degree distributions and hence
in the densityrsld of their eigenfrequencies. Following the
ideas used in the analysis of gel dynamics[20] and hyper-
branched polymers[19], we display an integral equation for
rsld for a special class of random graphs with arbitrary de-
gree distributions[13,31–33]. This integral equation allows
us to determinersld for the classes of scale-free networks
discussed in Ref.[12].

II. RANDOM GRAPHS WITH ARBITRARY DEGREE
DISTRIBUTIONS

The ensemble of networks under consideration is obtained
by starting fromN vertices. Each vertexi has its degreeki,
and the probability distribution of theki is pk. As discussed in
Ref. [33], one can then connect the vertices pairwise through
bonds (random pairing), while fulfilling the condition that
the number of bonds emanating from each vertexi is given
by its degreeki. All such possible combinations create the
ensemble. In the limitN→` the probability that a certain
vertex is involved in a closed loop of bonds vanishes like
1/N [33]; thus in this limit a typical network realization is a
set of connected treelike clusters. Such a treelike structure
may also be created as follows: We start from a vertex, sayi,
whose random degreek is chosen from the given distribution
pk. Then each of theki bonds of vertexi ends in a new
vertex. One must note now that the probability of reaching
via a randomly chosen bond a vertex of degreek is propor-
tional to kpk, i.e., it obeys the distribution
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qk =
kpk

o
j=1

`

jpj

. s3d

It follows that we must now distribute the degrees of the
newly produced vertices according toqk, Eq. (3). The proce-
dure is then continued step after step and stops only where
no new bonds were produced in the previous step. The
method creates all the random trees of the ensemble. Two
examples of such ensembles are the bond diluted Cayley tree
with functionality f [34], wherepk= s f

k
dpks1−pd f−k, and the

Erdös-Rényi random graph, whose degree distribution ispk
=pke−p/k! [33].

Depending on thepk distribution, the ensemble consists
either exclusively of finite clusters or it includes an infinite,
connected cluster, containing a finite fraction of the vertices
of the system[35]. In Refs. [10,33] it was shown that the
condition for the existence of this infinite cluster(also called
percolating cluster) is given by

o
k=0

`

ksk − 1dpk

o
k=0

`

kpk

. 1. s4d

Equation(4) defines the so-called percolation threshold. It is
very useful to extend the present model, by also allowing the
strength of each bond to be weighted[20,19] following a
normalized coupling strength distributionDsmd. Thus in the
corresponding connectivity matrices, each of the nonzero
values of Cik can be chosen according to the distribution
Dsmd.

As mentioned above, for a given network clusterS vari-
ous dynamical quantities involve only the density of eigen-
valuesrSsld of the corresponding LaplacianAS. Now, the
ensemble averaged density of eigenvalues is given by

rsld = krSsldl ; o
S

wSrSsld, s5d

where the sum extends over all the clustersS, each of the
rSsld is normalized, andwS denotes the probability with
which the clusterS is produced by the iterative growth pro-
cedure. Each of theS created in this way is connected, so
that AS has only one zero eigenvalue, whose corresponding
eigenvector is homogeneous. It turns out to be convenient to
split off from rsld the delta peak atl=0 whose weight isr0,
by setting

rsld = r0dsld + r+sld. s6d

The density of states is connected with the diagonal elements
of the resolvent, see, e.g., Ref.[19]. Denoting for each sitek
the kth diagonal element of the resolventRsld=sAS−l1d−1

by Rkksld, what is needed isRkksld averaged over all sitesk
and over all theS clusters:

Rsld = ksAS− l1dkk
−1l. s7d

The probabilitywk,S that when creatingS we start at sitek
does not depend onk; one has thuswk,S=wS/ uSu, where uSu
denotes the number of vertices insideS. This leads to

Rsld = o
S

o
k=1

uSu

wk,SsAS− l1dkk
−1 = o

S

wS
1

uSuok=1

uSu

sAS− l1dkk
−1.

s8d

Using for the normalized density of states of clusterS the
relation

rSsld = lim
e→0

1

p

1

uSu
Imo

k=1

uSu

fAS− sl + i«d1gkk
−1, s9d

we obtain from Eq.(5)

rsld = lim
e→0

1

p
Im Rsl + ied, s10d

with Rsld being given by Eq.(7). Now, the average over the
disorder can be performed with the help of the replica
method[36].

III. DERIVATION OF THE INTEGRAL EQUATION

In the following we denote the starting vertex by 0. To
obtain the averaged trace of the resolvent we rewrite it with
the help of a Gaussian integral overn-dimensional vectorsr i,

Rsld =KFDet
isAS− l1d

2p
Gn/2 i

n
E Sp

j

dr jDr 0
2

3expF−
i

2Soj ,k Ajk
S r jr k − lo

j

r j
2DGL , s11d

see, e.g., Ref.[19] for details. The averaging procedure in
Eq. (11) is considerably simplified by taking the replica limit
n→0, since then then/2-th power of the determinant is
unity. Using

o
i, j

Cij
Ssr i − r jd2 = o

i,j
Aij

Sr ir j , s12d

which follows readily from Eq.(1), leads to

Rsld=̇
i

n
E Sp

j

dr jDr 0
2 expFi

l

2o
j

r j
2G

3KexpF−
i

2o
j,k

Cjk
S sr j − r kd2GL . s13d

Here we use the dot over the equation sign to indicate that
the limit n→0 has to be taken. Now we employ the fact that
theSclusters are trees, in order to perform the integrations in
Eq. (13) iteratively, following the numberg of growth steps.
After the first growth step we have

Rs1dsld=̇
i

n
E dr 0r 0

2 expFi
l

2
r 0

2Go
k=0

`

pkhfs1dsr 0djk, s14d

where we defined
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fs1dsr 0d ; E dr expFi
l

2
r 2GFsr 0,r d s15d

and

Fsr j,r kd =E
0

`

dmDsmd expF− i
m

2
sr j − r kd2G . s16d

In a similar way, the averaged diagonal element after the
second growth step reads

Rs2dsld=̇
i

n
E dr 0r 0

2 expFi
l

2
r 0

2Go
k=0

`

pkhfs2dsr 0djk s17d

with

fs2dsr 0d =E dr expFi
l

2
r 2GFsr 0,r do

k=1

`

qkhfs1dsr djk−1.

s18d

More generally, introducing the generating functions of the
pk’s and theqk’s:

G0sfd = o
k=0

`

pkf
k and G1sfd = o

k=1

`

qkf
k−1 =

G08sfd
G08s1d

,

s19d

we find that afterg growth stepsfsgdsr d obeys

fsgdsr 0d =E dr expFi
l

2
r 2GFsr 0,r dG1„f

sg−1dsr d…, s20d

and that it can be obtained iteratively, starting fromfs1dsr d
given by Eq.(15). Furthermore,Rsgdsld fulfills

Rsgdsld=̇
i

n
E dr 0r 0

2 expFi
l

2
r 0

2GG0„f
sgdsr 0d…. s21d

Now, then→0 limit can be performed as described in Ref.
[19]. This leads forg→` to the pair of equations

Rsld = −
1

l
E

0

`

dxe−xG0„fsxd… s22d

and

fsxd = Ôe−xG1„fsxd…, s23d

whereÔ is the linear operator

Ô =E
0

`

dmDsmd expF−
l

m
x]x

2G = o
k=0

`
km−klm

k!
s− ldksx]x

2dk,

s24d

wherek¯lm denotes the average over the distributionDsmd.
In Ref. [33] it was shown that the generating function

H0szd=os=1
` Psz

s of the probabilitiesPs that a randomly cho-
sen vertex is part of a cluster ofs vertices can be obtained
based on the relations

H0szd = zG0„H1szd… and H1szd = zG1„H1szd…. s25d

HereH1szd is the generating function for the distribution of
sizes of components that are reached by choosing a random
bond and following it to one of its ends. As a check for our
scheme we now show that our Eqs.(22) and(23) are consis-
tent with Eqs.(25). To do this we look for a solution of Eq.
(23) in the form of a power series inl,

fsxd = o
k=0

`

lkfksxd. s26d

We obtain the first term by comparing powers ofl:

f0sxd = e−xG1„f0sxd…. s27d

Identifying e−x with z, Eq. (27) reproduces the second Eq.
(25) with f0sxd=H1se−xd. Hence we infer from the first Eq.
(25) that

e−xG0„f0sxd… = o
s=1

`

Pse
−sx. s28d

It follows thatG0(f0s0d) is the probability for a vertex to be
part of a finite size cluster.

From Eqs.(6) and (10) one infers thatRsld possesses a
simple pole of the formr0/l, wherer0 is the finite weight of
zero eigenvalues. Nowr0 can be calculated by inserting Eq.
(26) into Eq. (22), which leads to

r0 =E
0

`

dxe−xG0„f0sxd… = 1 +G08s1dE
0

`

dxe−xG1„f0sxd…f08sxd

s29d

=1 +G08s1dE
0

`

dxf0sxdf08sxd = 1 −
G08s1d

2
, s30d

where in the second step we performed a partial integration
and used Eq.(19). We note that inserting Eq.(28) into (30)
leads tor0=os=1

` Ps/s; the result represents the fact that each
s cluster contributes a term 1/s to the density of the eigen-
value zero.

IV. SCALE-FREE NETWORKS CLOSE TO THEIR
PERCOLATION THRESHOLD

In this section we turn from our general considerations to
focus onscale-freedegree distributions; these exhibit fork
large a power-law behavior,pk,k−g. To describe the dis-
tance from the percolation threshold, Eq.(4), we introduce
the parameterD through the relation

D = 1 −
ok=0

`
ksk − 1dpk

ok=0

`
kpk

= 1 −G18s1d. s31d

Evidently, we assume by this that the first and the second
moments of thepk distribution exist. From Eq.(4) it follows
that for D.0 the ensemble is made up of finite connected
clusters, while forD,0 there exists an infinite cluster. The
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critical point (percolation threshold) is at D=0. As a note of
caution we remark that the choice of the sign ofD is possibly
misleading but since in the following we investigate exclu-
sively network clusters below the percolation threshold this
choice considerably simplifies the formulas. Exemplarily, for
the ER random graph the critical point is atpc=1 and for the
bond diluted Cayley tree it is atpc=1/sf −1d; using Eq.(31)
it turns out that in both casesD=spc−pd /pc. Note that for
g,3 Eq.(31) diverges; this agrees with the criterium of Eq.
(4), since forg,3 one always has an infinite cluster[10].

We center now on the form of Eqs.(23) and(22) close to
D=0. To be sufficiently general, we assumepk to have for
largek the form

pk , k−ghc + Osk−1dj. s32d

This implies for g.3 that the power series ofG1sfd, Eq.
(19), has as radius of convergence the unit circleufu=1. To
determine the singularity on the radius of convergence we
remark that the expansion coefficientsp̃k of the quantity

G̃1sfd;G1sfd−cGs2−gds1−fdg−2 obey p̃k,k−g−1 for large

k. Thus G̃1sfd is m-times continuously differentiable for
ufuø1, wherem is the largest integer smaller thang−2.

Using the Taylor expansion ofG̃1sfd aroundf=1 up to or-
der m one gets[12,37]

G1sfd . 1 + s1 − Ddsf − 1d + ¯ +
1

m!
]f

mG1s1dsf − 1dm

+ cGs2 − gds1 − fdg−2, s33d

where we used Eq.(31). Close to the percolation threshold
D=0 we expect the solution of Eq.(23) to scale in its vari-
ablesx andl, and we choose a solution of the form[21]

fsxd . 1 − Dbf̃sx/Dd,l/D1+dd, s34d

with exponentsb.0 and d.0, to be determined below.
Inserting Eq.(34) into Eq. (23) and expanding in powers of
D by using Eq.(33) we obtain

1 − Dbf̃sx,ld

= h1 − km−1llDx]x
2 + ¯jh1 − Ddx + ¯j

3H1 − s1 − DdDbf̃sx,ld + usg − 4d
G19s1d

2
D2bf̃2sx,ld

+ us4 − gdcGs2 − gdDbsg−2df̃g−2sx,ld + ¯J , s35d

whereusxd denotes the Heaviside function and the dots indi-
cate terms with higher powers ofD. Comparing powers ofD
leads to the equation

0 = km−1llD1+bx]x
2f̃sxd − Ddx + Db+1f̃sxd + usg − 4d

3
G19s1d

2
D2bf̃2sxd + us4 − gdcGs2 − gdDbsg−2df̃g−2sxd.

s36d

Now the unknown exponentsb andd are determined by the
requirement that all terms in this equation be of the same

order inD. For g.4 this leads tob=1 andd=2. From Eq.
(36) it follows then that

0 = km−1llx]x
2f̃sxd − x + f̃sxd +

G19s1d
2

f̃2sxd. s37d

This universal scaling equation for the order parameter field
f̃sxd was already pointed out in Ref.[21] in connection with
the mean-field theory of random resistor networks. Thus for
g.4 we obtain the classical mean-field scaling equation of
the order parameter fieldfsxd, which is also valid for the ER
graph and the Cayley tree. This is in accordance with the
result in Ref. [12], that the critical properties of classical
random graphs arenot changed forg.4. On the other hand,
for 3,g,4 the exponentsb and d read nowd=1+b and
d=bsg−2d, so that, solving forb:

b =
1

g − 3
, s38d

as found in Refs.[11] and [12]. Now the corresponding
equation reads

0 = km−1llx]x
2f̃sxd − x + f̃sxd + cGs2 − gdf̃g−2sxd. s39d

We note thatb is related to the probabilityP`,Db that a
vertex belongs to the percolating cluster. From Eqs.(37) and
(39) for the order parameter fieldf̃ we obtain a scaling re-
lation for Rsld by inserting Eq.(34) into Eq. (22). To this
end we subtract the poler0/l from Rsld and expand in
powers ofD:

Rsld −
r0

l
= −

1

l
E

0

`

dxe−xhG0„fsxd… − G0„f0sxd…j

. −
D1+b

l
E

0

`

dxe−D1+bxhG0„1 − Dbf̃sx,l/D2+bd…

− G0„1 − Dbf̃0sxd…j

. Db−1 kkl
l/D2+bE

0

`

dxhf̃sx,l/D2+bd − f̃0sxdj,

s40d

where f̃0sxd=limD→0D−bhf0sxD1+bd−1j. Thus we have
shown thatr+sld obeys forl,D close to 0 a scaling law of
the form

r+sl,Dd . Db−1r̃sl/D2+bd. s41d

Furthermore, the scaling functionr̃sxd can be determined via
Eqs.(40), (37), (39), and(10). From the preceding consider-
ations it follows immediately that the shape ofr̃sld differs in
the regiong.4 from its shape in the region 3,g,4. In the
first region Eq.(37) is valid andr̃sld does not depend ong,
whereas in the second region theg-dependent Eq.(39) holds.
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V. INTEGRATION FOR SCALE-FREE DEGREE
DISTRIBUTIONS AND SPECIAL DISTRIBUTIONS

OF BOND STRENGTHS

As shown in Ref.[20], the analytical work simplifies con-
siderably for the following distribution of bond strengths:

Dsmd =
1

m2 exps− 1/md, s42d

since then the operatorÔ, Eq. (24), takes the form

Ô =E
0

`

dm
1

m2 exps− 1/mdexpF−
l

m
x]x

2G = f1 + lx]x
2g−1.

s43d

For instance, applying 1+lx]x
2=Ô−1 to both sides of Eq.

(23), one obtains the ordinary second order differential equa-
tion

fsxd + lx]x
2fsxd = e−xG1„fsxd…. s44d

As noted in Ref.[20], the particular choice ofDsmd, Eq.
(42), does not change much the smalll behavior ofrsld,
given that in Eq.(42) the probability for small coupling
strengthsm is exponentially small. In particular,Dsmd does
not change the form of the functionr̃sld, as only the first
inverse momentkm−1l enters Eqs.(37) and (39). Equation
(44) has to be solved subject to the boundary conditions

fs0d = 1 and fs`d = 0. s45d

In the limit l→0 Eq. (44) can be linearized around the first
term f0sxd of the asymptotic expansion, Eq.(26). This is
achieved by insertingfsxd=f0sxd+flsxd into Eq. (44) and
keeping only linear terms infl, since from Eq.(26) we have
flsxd=Osld. This results in the inhomogeneous linear equa-
tion

lx]x
2flsxd + h1 − e−xG18„f0sxd…jflsxd = − lx]x

2f0sxd.

s46d

To investigate specific scale-free degree distributions we
choose the following generating function:

G0sfd = f +
1

2
s1 − Dds1 − fd2 −

1

9

g − 3

g − 4
s1 − fd3

+
2

3

1

sg − 4dsg − 2dsg − 1d
s1 − fdg−1. s47d

This form corresponds indeed to a degree distributionpk
which obeys Eq.(32); the c value in Eq.(32) is

c =
2

3

1

sg − 4dsg − 2dsg − 1dGs1 − gd
. s48d

The algebraic choice ofG0sfd given by Eq.(47) reduces
considerably the effort needed to integrate Eq.(44). Further-
more, Eq.(47) can be used in the whole interval 3,g,5
containing the valueg=4 above which regular mean-field
exponents of percolation appear. On the other hand, for val-
ues ofg outside the interval 3,g,5 not all expansion co-

efficients ofG0sfd are non-negative and thus they cannot be
viewed anymore as probabilities. Note that the poles in
4−g of the last two terms in Eq.(47) cancel and expanding
Eq. (47) in powers of 4−g we obtain forg=4 a branching
point of the form s1−fd3 lns1−fd at f=1. Furthermore,
from Eq.(30) it follows thatG0sfd of Eq. (47) leads tor+sld
being normalized to

E
0

`

dlr+sld =
1

2
. s49d

A. Numerical procedure

To numerically calculate the eigenvalue spectra of scale-
free networks we have performed extensive numerical diago-
nalizations of the Laplacians of these structures.

We create our structures by the recursive scheme intro-
duced in the second section: For each realization of the struc-
ture we first begin with an initial vertex, whose functionality
k is determined according to the probabilitiespk derived
from the generating function Eq.(47). At the open end of
each bond a newk8-functional vertex is placed, now withk8
distributed according to the probability distributionqk8 given
in Eq. (3); the latter procedure is then applied recursively to
thek8−1 open bonds of this new vertex. The recursion stops
when no open bonds are left, i.e., when all outer vertices
have functionalityk8=1. Note, however, that due to the lim-
ited time and memory resources available for the subsequent
diagonalizations, the total number of bonds has to be re-
stricted to some maximum valueNmax. If a given recursion
has not stopped before reaching a total ofNmax bonds we
proceed by closing all remaining open ends by ak8=1 vertex
and evaluate the properties of this truncated structure. Obvi-
ously, this also limits the range of validity of the resulting
spectrum. As observed in our previous study[19], in the
region affected by the truncation the spectrum shows charac-
teristic oscillations. To verify this procedure for the trunca-
tion limit Nmax=500 used in general in this study, we have
also performed for some of the curves shown in Fig. 4 addi-
tional diagonalizations usingNmax=4000. The so obtained
numerical results for log10rsld agree within the symbol size
for the whole range covered by theNmax=500 data shown in
Fig. 4 and in fact extend the range of agreement with the
solution of the differential Eq.(44) by one order of magni-
tude.

For the distribution of bond strength of a given structure
we chose either fixed bond strengthsm=1 or strengthsm
distributed according to Eq.(42). The connectivity matrixA
with entries weighted by thesem is, by construction, a real,
symmetric matrix. For all these matrices we obtained the
eigenvalues using a combination of the Householder method
and of the tridiagonal QL diagonalization algorithm[38,39].

We accumulated the eigenvalues of all structures gener-
ated for specific values of the parametersg and D, where
eigenvalues stemming from a structure withuSu monomers
are weighted with a factor of 1/uSu, as given by Eqs.(5) and
(9). For each of the data sets shown later in Figs. 1, 3, and 4
the total number of structures truncated atNmax=500 was
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53107 and for structures truncated atNmax=4000 was
43105.

VI. RESULTS

In Fig. 1 we display first the density of eigenvaluesrsld
for the degree distributionpk generated byG0sfd, Eq. (47),
with g=3.5 and for various values ofDø0. The random
coupling strengthsm obey the distribution of Eq.(42). We
obtainedrsld both through the numerical integration of Eq.
(44) and also through the direct numerical diagonalization of
many structure realizations, as described above. As can be
seen, thersld obtained by the two methods agree very well
with each other over a largel range, thus supporting our
theoretical considerations. The deviations of the curves from
each other for smalll are due to the limitations imposed by
our direct diagonalization approach; in fact the sharp decay
of the numerical results forl,10−3 is an artifact. The curves
of Fig. 1 possess a shoulder at log10l.−0.7 which is most
evident for the lowest curve corresponding toD=0.32. How-
ever, this structure is caused by the choiceG0sfd, Eq. (47),
and is not specific for scale-free degree distributions. As dis-
cussed above, scale-free networks are characterized by the
behavior forsmall valuesof l. To investigate the smalll
behavior, we show in Fig. 2rsld for the same values of the
parametersg andD, but extending to much smaller values of
l. In this plot the results belowl,10−3.8 are obtained from
the linearized Eq.(46), an approximation which we expect to
be exact in the limitl→0. In fact, atl=10−3.8, where the
approximation and the exact curve get together, the relative
error of rsld amounts to about 1%, which is already hard to
observe in the plots. ForD not too close to the percolation
threshold atD=0 and for smalll the slopes of the curves in
the double logarithmic plot of Fig. 2 tend to a constant. This
would imply a simple algebraic dependence:

rsld , csDdla1, for l → 0, s50d

with a positive exponenta1 and aD-dependent coefficient
csDd. This differs from the situation expected to hold on

classical random graphs with sufficiently fast decaying de-
gree distributionspk, where heuristic arguments have been
given [20,22] for the existence of Lifshitz tails in the density
of states. In the latter situation one should observe the form
[19]

rsld , expF−
AsDd
Îl

G, for l → 0, s51d

whereAsDd,D3/2 for D→0. This behavior stems from the
fact that small eigenvalues are produced by large, quasilinear
regions, which, however, occur with very small probability.
Since for scale-free degree distributions such linear regions
are not likely to occur, there have to be other types of con-
figurations which lead to an increase in the occurrence of
small eigenvalues. For instance two vertices, each of very
large degree, moving against each other produce a very low
eigenvalue.

At the percolation thresholdD=0 we infer from Fig. 2 for
small l an algebraic decay of the form of Eq.(50), with an
exponent a2, which however differs froma1. One has
namely a2,a1. Thus close toD=0 we encounter here a
crossover behavior between two algebraic decays with dif-
ferent powersa1 anda2. The scaling Eq.(41) suggests that
this crossover should take place atl,D2+b.

To determine theg dependence ofa2, we display in Fig. 3
rsld in double logarithmic scales forD=0 and for various
values ofg. Assuming that forl→0 the slopes of the plotted
curves tend to a constant, saya2 we infer for g
=4.5, 4.25, 4, 3.75,3.5, and 3.25 the valuesa2
=0.017, 0.015, 0.04, 0.113, 0.25, and 0.5, respectively. For
g.4 we expect to encounter the classical mean-field scaling
function; since thenrsld tends to a constant forl→0 at D
=0 [19,20], this implies thata2=0 which is in good agree-
ment with the first two valuesa2=0.017 forg=4.5 anda2
=0.015 for g=4.25. Moreover, directly atg=4, we expect
possible logarithmic corrections to the power law, Eq.(50),
which explains the valuea2=0.04 which is slightly too large.

FIG. 1. Density of eigenvaluesrsld in double logarithmic
scales. Displayed are spectra for the scale-free degree distribution
generated byG0sfd, Eq. (47), and random coupling strengthsm
obeying Eq.(42). Here, g=3.5 is fixed andD is 0 spentagonsd,
0.02 sLd, 0.04s,d, 0.08snd, 0.16ssd, and 0.32shd from above.
Lines: numerical solution of Eq.(44). Symbols: direct diagonaliza-
tion of randomly created structures.

FIG. 2. Density of eigenvaluesrsld, obtained from the integra-
tion of Eq. (44) (right hand side of the figure) and from Eq.(46)
(left hand side) for the same parameter values as in Fig. 1. To render
this difference clear, we have left out a small region around
log10l=−3.8.
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For 3,g,4 it turns out that we can reproduce theg depen-
dence ofa2 through the relation

a2 =
4 − g

2g − 5
. s52d

In a similar way, we obtain from the smalll behavior of
rsld for D.0 thata1=2g−5 holds.

The g dependence ofa2 can be derived from the scaling
relation Eq.(41) by using the fact that the behavior ofr̃sld
for l@1 is given by the algebraic dependence ofrsld for
l!1 at D=0,

r̃sld = lim
D→0

D1−brslD2+b,Dd

, D1−bslD2+bda2

= D1−b+a2s2+bdla2. s53d

For this to give a reasonable limit the exponent 1−b+a2s2
+bd=0 of D has to vanish and solving this equation fora2

proves the relation Eq.(52). Similarly, the behavior ofr̃sld
for l!1 can be derived from the algebraic dependence Eq.
(50) of rsld for l!1 andD.0,

r̃sld = lim
D→0

D1−brslD2+b,Dd

, D1−bcsDdslD2+bda1

= D1−b+a1s2+bdcsDdla1. s54d

By the same arguments as above this leads tocsDd
,Db−1−a1s2+bd, but does not fix the exponenta1.

As shown by Eqs.(39) and(40), the scaling functionr̃sld
of Eq. (41) should be model independent and therefore
should not depend on the particular choice ofDsmd, Eq.(42).
In particular, atD=0 a power law with the exponenta2
should still hold. This is corroborated by Fig. 4, in which we
display the density of eigenvaluesrsld for fixed bond
strengths,m=1, obtained from the direct diagonalization of

random matrices, together with the analytical results for the
distribution, Eq.(42), of coupling strengths.

To investigate the range of validity of the scaling law Eq.
(41) we display in double logarithmic scales for fixedg
=3.5 in Fig. 5 andg=4.5 in Fig. 6 the quantityr̂sl ,Dd
;D1−brslD2+b ,Dd which tends forD→0 to the scaling
function r̃sld of Eq. (41). In both figures we show curves for
various values ofD close toD=0. Forl andD small enough
the curves forr̂sl ,Dd should collapse into a single one,
given by the scaling functionr̃sld of Eq. (41). In Fig. 5 the
collapse appears roughly forlD4,10−2 and in Fig. 6 for
lD3,10−2. In Figs. 5 and 6 the scaling functionsr̃sld are
given by the envelopes of the curvesr̂sl ,Dd for different
values ofD. These envelopesr̃sld seem to be monotonic
growing functions. In Fig. 5r̃sld shows for the limiting case
l→0 the algebraic behaviorr̃sld,la1 but in Fig. 6 it is not
possible to observe any algebraic dependence.

In Fig. 6, the functionr̃sld given as a solid line is ob-
tained from the direct integration of Eq.(37), which scales.
More generally, forg.4 we obtainb=1; we note that for
g.4 all network ensembles lead to the same scaling func-
tion r̃sld. Note that the derivation of Eqs.(37) and (40) in
Sec. IV shows that the essential condition for this scaling
function to hold is that the degree distributionpk decay faster
than k−4. This condition is certainly fulfilled for classical
random graphs, like the bond diluted Cayley tree or the
Erdös-Rényi random graph.

VII. CONCLUSIONS

In this work we investigated the eigenvalues of Lapla-
cians of structures belonging to a general type of treelike
networks, in which the vertex degrees are randomly distrib-
uted. The Laplacian is of special interest, since it determines
several, very important dynamic quantities associated with

FIG. 3. Density of eigenvaluesrsld in double logarithmic scales
at the percolation thresholdD=0 for G0sfd, Eq.(47) andm obeying
Eq. (42). Here g is varied, being taken to beg=4.5 spentagonsd,
4.25 sLd, 4 s,d, 3.75snd, 3.5 ssd and 3.25shd from above.
Lines: integration of Eq.(44). Symbols: direct diagonalization.

FIG. 4. Density of eigenvaluesrsld at the percolation threshold
D=0 for fixed coupling strengths,m=1 in comparison with the
analytical results form obeying Eq.(42) (straight lines). The sym-
bols show simulation data truncated atNmax=500 (open symbols)
and Nmax=4000 (filled symbols). The values ofg and D and the
symbol shapes are as in Fig. 3
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the network. For degree distributionspk with a power law
tail, pk,k−g, we obtainedrsld, the ensemble averaged den-
sity of eigenvalues, based on two different methods. First, in
a traditional way, by performing numerical diagonalization
techniques[14,15]; second, using the replica method of sta-
tistical physics. The second approach allows to evaluate the
ensemble averagedrsld based on an analytical integral equa-
tion. For largel domains it turns out that the agreement
between the results obtained by the two methods is very
good.

Of special interest is the behavior ofrsld close to the
percolation threshold. Here an infinite cluster appears, and it
is known that the exponentg which governs the largek
behavior ofpk affects the critical exponents of the percola-
tion problem [12]. With the help of our integral equation
approach we were able to study the scaling properties ofrsld
close to the percolation threshold and to determine numeri-
cally the corresponding,g-dependent scaling functions. In
agreement with Ref.[12], we find that in the regiong.4
one recovers the critical properties of classical random
graphs.

The long time dynamics is governed by the smalll be-
havior of rsld. For this we found two algebraic formsrsld
,la1 and rsld,la2, where the first relation holdsbelow
and the secondat the percolation threshold. On the basis of
the numerical results of the integral equation we conjecture
that a1=2g−5 and a2=s4−gd /a1 hold. We find that in
scale-free networks very small eigenvalues occur with higher
probability than in classical random graphs. We conjecture
that this finding is due to the existence of highly connected
vertices.
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