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Dynamical scaling behavior of percolation clusters in scale-free networks
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In this work we investigate the spectra of Laplacian matrices that determine many dynamic properties of
scale-free networks below and at the percolation threshold. We use a replica formalism to develop analytically,
based on an integral equation, a systematic way to determine the ensemble averaged eigenvalue spectrum for
a general type of treelike networks. Close to the percolation threshold we find characteristic scaling functions
for the density of statep(\) of scale-free networksp(\) shows characteristic power lawg\)~ X\t or
p(\) ~\% for small \, where a; holds below andx, at the percolation threshold. In the range where the
spectra are accessible from a numerical diagonalization procedure the two methods lead to very similar results.
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I. INTRODUCTION »
: : _ QM) = | drf(t,M)p(N), (2)
Recent studies of nets, ranging from social networks to o+

power grids and the internet, revealed that in many cases the
degree distributiorpy, i.e., the probability that an arbitrary
vertex is connected to exactkyother vertices, often exhibits
a power law, namely that,~k™” holds[1,2]. Networks for
which this relation is fulfilled are callescale free scale-free
networks differ from the classical random grapi®, for
which the distributionp, is Poissonian, and from small-
world-networks[4—9]. Recent works have clarified that the

properties of scale-free networks, in particular percolation . ) ; .
differ markedly from the classical ca$#,2,10-12. It turns lar to Eq.(2). We are mt_erested in the _dyr_1am_|c behavior of
random graphs with arbitrary degree distributions and hence

out that the asymptotic behavior for k large, the so- . . o . .
called tail ofpy )\//vhii)ch is quantifiedptf)(yy is funé]amental in the densityp(A) of their eigenfrequencies. Following the

differentiating between the distinct classes of behavior: Thui;jeas husded i? the agalysis d(')f ?el dyn_artnﬂﬁﬁ]land ht)_/perf-
for y<4 the critical exponents change from the usual value ranched po Vmefﬁl ], we display an in egral equation for
found for classical graphii2,13. p(\) for a special class of random graphs with arbitrary de-

Now, the topological properties of a network are reflectedd"®€ d|str|but_|ons[13,31—33. This integral equation allows
in the spectral properties of its connectivity mat@x This  US 10 determing()) for the classes of scale-free networks
matrix is constructed by letting its off-diagonal eleme@is ~ discussed in Ref12].
be 1 ifi andj are connected or O otherwise; moreover, the
diagonal element€;; of C are zero. For scale-free networks
it was found that the density of the eigenvaluesCohas a
triangular form with a power-law taijl14-1§. On the other
hand, many problems ranging from the dynamics of ran-
domly branched polymergl9] and the stress relaxation of
near critical gels[20], over random resistor-capacitor net-
works[21] to glassy relaxation dynami¢22], depend on the
LaplacianA; A is connected tdC via:

or some related form, in whichis replaced byw. For in-
stance, for random walks, the site averaged return probability
Qg(t) of a random walker to the origin is obtained with the
choicefr(t,\)=e™ [22]. Moreover, the mechanical storage
and loss moduli[26,27, the averaged time-dependent
stretching of macromolecules in external fie[@§,27, and

the dielectric relaxation functiong0], all obey forms simi-

Il. RANDOM GRAPHS WITH ARBITRARY DEGREE
DISTRIBUTIONS

The ensemble of networks under consideration is obtained
by starting fromN vertices. Each vertek has its degred;,
and the probability distribution of thie is p,. As discussed in
Ref.[33], one can then connect the vertices pairwise through
bonds (random pairing while fulfiling the condition that
N the number of bonds emanating from each veitéxgiven
A= <5ik2 Cjk) -Cy. (1) by its degreek;. AII_Sl_Jch possible comb_inations create _the
i=1 ensemble. In the limiN— oo the probability that a certain
vertex is involved in a closed loop of bonds vanishes like
A whole series of works based @nwere devoted to classi- 1/N [33]; thus in this limit a typical network realization is a
cal deterministic and random graphs, such as Cayley treeset of connected treelike clusters. Such a treelike structure
(dendrimery, hyperbranched macromolecules, the Erdds-may also be created as follows: We start from a vertexj say
Rényi (ER) random graph, and bond diluted Cayley treeswhose random degréeis chosen from the given distribution
[17-29. Based on the Laplacian, many time- and frequencyp,. Then each of thé bonds of vertexi ends in a new
dependent observables can be written as integralsgi%¢r  vertex. One must note now that the probability of reaching
the density of eigenvalues @: The structure of these ob- via a randomly chosen bond a vertex of degkde propor-
servables is either tional tokp,, i.e., it obeys the distribution
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. Kpx @ ROV = (AS= D). (7)
§ Dy The probabilityw, s that when creating we start at sitek
i

does not depend ok; one has thusv,s=ws/|S, where|§
denotes the number of vertices insifleThis leads to

It follows that we must now distribute the degrees of the 1 Ei

newly produced vertices accordingdg Eq.(3). The proce- R\ =2, 2 Wi S(AS- )\1)kk 2 Ws— >, (AS- )\1)kk
dure is then continued step after step and stops only where S k=1 Ep=

no new bonds were produced in the previous step. The (8)

method creates all the random trees of the ensemble. Two
examples of such ensembles are the bond diluted Cayley trdésing for the normalized density of states of clus&the
with functionality f [34], wherep,=(!)p&(1-p)* and the relation
Ertlj(t')s—Rényi random graph, whose degree distributiop is 11 Ei
=peP/k! [33]. = lim= S_(\ +

Depending on they, distribution, the ensemble consists pelh) = I|m |3|m2 (A% 6 IS)l]kk’ ©
either exclusively of finite clusters or it includes an infinite,
connected cluster, containing a finite fraction of the vertice
of the system[35]. In Refs.[10,33 it was shown that the 1 )
condition for the existence of this infinite clusi@lso called p(\) =1im ;Im R\ +ie), (10)
percolating clusteris given by 0

e obtain from Eq(5)

with R(\) being given by Eq(7). Now, the average over the
disorder can be performed with the help of the replica

> k(k=1)py method[36].
k=0
L (4) lll. DERIVATION OF THE INTEGRAL EQUATION
gkl@ In the following we denote the starting vertex by 0. To

obtain the averaged trace of the resolvent we rewrite it with

Equation(4) defines the so-called percolation threshold. It isthe help of a Gaussian integral ovedimensional vectors;,

very useful to extend the present model, by also allowing the |(AS A1) [V2i
strength of each bond to be weight§2D,19 following a R(\) = t—— I(H dr; )

: . LS ) 2
normalized coupling strength distributid ). Thus in the m
corresponding connectivity matrices, each of the nonzero i s )
values of Cy can be chosen according to the distribution X exp _E(ZkAjkrirk_)‘z rj) » (1D
D(w). i i
As mentioned above, for a given network clus&vari-  see, e.g., Ref[19] for details. The averaging procedure in

ous dynamical quantities involve only the density of eigen-Eq. (11) is considerably simplified by taking the replica limit
valuespg(\) of the corresponding LaplaciaAS. Now, the n—0, since then then/2-th power of the determinant is
ensemble averaged density of eigenvalues is given by unity. Using

5 > Giri- EA, it (12

i<j

p(\) =(ps(\)) = ES: Wepg(N),

which follows readily from Eq(1), leads to
where the sum extends over all the clust€rsach of the

ps(\) is normalized, andvs denotes the probability with ROV)=— f(]‘[ dr )ro exp{l—Er }

which the clustelSis produced by the iterative growth pro-

cedure. Each of th& created in this way is connected, so

that AS has only one zero eigenvalue, whose corresponding ><<ex 2 Cjk(r rk)2]>_ (13)
eigenvector is homogeneous. It turns out to be convenient to 2i 2k

split off from p(\) the delta peak at=0 whose weight i,

) Here we use the dot over the equation sign to indicate that
by setting

the limit n— 0 has to be taken. Now we employ the fact that
=05 theSclusters are trees, in order to perform the integrations in
P(N) = pod(N) + pi(N). (©) Eq. (13) iteratively, following the numbeg of growth steps.

. . . . After the first growth step we have
The density of states is connected with the diagonal elements g P

of the resolvent, see, e.g., REL9]. Denoting for each sitk i

the kth diagonal element of the resolveRt\)=(AS-\1)"1 R(l)(h)zﬁ f drorj exp[ ro]E pddD(ro)}*, (14
by Ry(\), what is needed iR (\) averaged over all sitds

and over all thes clusters: where we defined
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#9 = [ o exp{iﬁrz]F(ro,r) s Ho(2) = 2Go(Hi(2) and Hy(2=2Gi(H,(@). (29
2 HereH,(z) is the generating function for the distribution of
sizes of components that are reached by choosing a random
bond and following it to one of its ends. As a check for our
* o ) scheme we now show that our E@22) and(23) are consis-
Frj,ry =] duD(u) exp - 'E(rj 7. (16 tent with Eqs(25). To do this we look for a solution of Eq.
0 (23) in the form of a power series N,
In a similar way, the averaged diagonal element after the

second growth step reads H(X) = § N(x). (26)
k=0

and

i Dy
R(Z)()\):H f dror eXP['ErS}% pdd@(ro¥ (170 we obtain the first term by comparing powersiof
$o(X) = €7G1( (X)) (27)

with
" Identifying €™ with z, Eq. (27) reproduces the second Eq.
A _ (25) with ¢y(x)=H;(e™). Hence we infer from the first Eq.
(2 - A2 (1) k-1 0 1
¢ (ro)—fdr eXP{lzr }F(ro,r)qu{cﬁ (™. (25) that

(18)

More generally, introducing the generating functions of the
p’s and theqy’s:

€7Go(¢o(X) = 2, P (28)
s=1

It follows that Gy(¢o(0)) is the probability for a vertex to be
Gy(o) part of a finite size cluster.

G’—(l)’ From Egs.(6) and (10) one infers thaR(\) possesses a
0 simple pole of the fornpy/\, wherep, is the finite weight of
(190  zero eigenvalues. Now, can be calculated by inserting Eqg.

(26) into Eqg.(22), which leads to

Go(#) =2 pkd* and Gy(4) =2 g i=
k=0 k=1

we find that aftery growth stepsp'9(r) obeys

¢<g)(|’o) :Jdr exp{i%rz] F(ro,r)61(¢(g_l>(r)), (20) Po= fo dxe”Go(p(x)) = 1 +GO(1)L dxe™G1(¢o(X)) o(X)
(29
and that it can be obtained iteratively, starting fre#¥(r)

; (9) i !
given by Eq.(15). FurthermoreR'9()\) fulfills . GY(1)

> (30)

. \ =1+G4(1) f dXepo(X) (%) = 1
RO\~ f dror2 exp[i—rg]Go(zﬁ(g)(ro)). (22) °

n 2 where in the second step we performed a partial integration
and used Eq(19). We note that inserting Eq28) into (30)
leads topg==Z ;P¢/s; the result represents the fact that each
s cluster contributes a term 4 to the density of the eigen-

Now, then— 0 limit can be performed as described in Ref.
[19]. This leads forg— = to the pair of equations

1 value zero.
ROV == |  dx€*Go(¢(x) (22
0
IV. SCALE-FREE NETWORKS CLOSE TO THEIR
and PERCOLATION THRESHOLD
d(x) = 6e‘xGl(¢(x)), (23) In this section we turn from our general considerations to

R focus onscale-freedegree distributions; these exhibit flr

whereO is the linear operator large a power-law behaviop,~k™. To describe the dis-

tance from the percolation threshold, Ed), we introduce
the parameteA through the relation

oc 0,k
0= f duD(u) exp{— Axai} =2 WTE(‘ NK(x)K,
° Bl > k(k=1)p

(24) A=l-— = 1-GJ). (31)

o

- 2ok
where(:--),, denotes the average over the distributidfu).
In Ref. [33] it was shown that the generating function Evidently, we assume by this that the first and the second
Ho(2) =2 ,P<Z° of the probabilitiesPs that a randomly cho- moments of thep, distribution exist. From Eq4) it follows
sen vertex is part of a cluster sfvertices can be obtained that for A>0 the ensemble is made up of finite connected
based on the relations clusters, while forA <O there exists an infinite cluster. The
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critical point (percolation thresholdis at A=0. As a note of order inA. For y>4 this leads tg3=1 andé=2. From Eq.
caution we remark that the choice of the sign\ak possibly  (36) it follows then that

misleading but since in the following we investigate exclu-

sively network clusters below the percolation threshold this e ~ ( 1)~
choice considerably simplifies the formulas. Exemplarily, for 0 =(u INXGh(X) =X+ P(X) + ——

the ER random graph the critical point is@t=1 and for the
bond diluted Cayley tree it is gi,=1/(f-1); using Eq.(32)

it turns out that in both caseS=(p,—p)/p.. Note that for
v<3 Eq.(31) diverges; this agrees with the criterium of Eq.
(4), since fory<<3 one always has an infinite clustgr0].

#x. (@37

This universal scaling equation for the order parameter field

<~¢>(x) was already pointed out in RgR1] in connection with
the mean-field theory of random resistor networks. Thus for
v>4 we obtain the classical mean-field scaling equation of
A:V(\)/?'?c? I’:thrsr:gf\?éizr;tﬁgeg]:r:emr ;IT sv(i&:gsi?sgs)hc:\)/zefé? the order parameter field(x), whi.ch-is -also valid for the .ER
largek the form graph .and the Cayley tree. T_h_|s is in acc_ordance W|t_h the
result in Ref.[12], that the critical properties of classical
P~ k{c+ 0Ok} (32)  random graphs aneot changed fory>4. On the other hand,

for 3< y<4 the exponentg and § read nows=1+8 and

This implies for y>3 that the power series @,(¢), Eq. 5= B(y~2), so that, solving forB:

(19), has as radius of convergence the unit citehe=1. To
determine the singularity on the radius of convergence we

remark that the expansion coefficierjig of the quantity B=——, (38)
G() =Gy(¢)—cl'(2-7)(1-)"2 obeyPy~k " for large v=3

k. Thus G;(¢) is m-times continuously differentiable for
|#|<1, wherem is the largest integer smaller thap-2.
Using the Taylor expansion @;(¢) around¢=1 up to or-
derm one getg12,37

as found in Refs[11] and [12]. Now the corresponding
equation reads

0 = (U HAXFZH(X) = x+ $(x) + (2 = )7 2(x). (39)

Gi() =1+(1-A)p-1+ - + _%Gl(l)(d’ nm We note thatg is related to the probability,,~A” that a
vertex belongs to the percolating cluster. From Eg8%) and
+el 2=y -9 (33 (39) for the order parameter fiela we obtain a scaling re-
where we used Eq31). Close to the percolation threshold lation for R(\) by inserting Eq.(34) into Eq. (22). To this
A=0 we expect the solution of E¢23) to scale in its vari- €nd we subtract the polgy/X from R(A) and expand in
ablesx and\, and we choose a solution of the foffi2] powers ofA:

B(x) = 1~ APH(XIA° NIAT), (34 oo 1(7
_o__= X _
with exponents>0 and >0, to be determined below. RO A )\JO AXE{Go(¢00) = ColSo(X))}

Inserting Eq.(34) into Eq.(23) and expanding in powers of

A by using Eq.(33) we obtain AMA

=- J dxed! BX{GO(l APP(x, N AZ*B))
0

1- AFB(xM) A
= {1~ (W HNAXP + - HL =A%+ -} ~ Go(1 ~ A¥y(x)}
DRI S o~
{1 (1= A)APPH(XN) + O(y— 4) Gl )Azﬁqs?( ) = AF 1MA—2+B . dX{p(x, MAZP) = o(x)},

(40)
+0(4 = Y)CT(2 = PAPT 22 \) + - } ., (39
where $o(X)=lim, oA P{po(xA1*#)-1}. Thus we have
whered(x) denotes the Heaviside function and the dots indi-shown thatp.(\) obeys for\ ~ A close to 0 a scaling law of
cate terms with higher powers df Comparing powers ch  the form
leads to the equation
- 2+,
0 :<,u,_l>)\Al+BX07§'(?)(X) — A%+ A,B+1'(?)(X) + 0(,}/_ 4) P+()\ A) = APY ()\/A 5) (41
Gg(l) Furthermore, the scaling functigitx) can be determined via
Eqgs.(40), (37), (39), and(10). From the preceding consider-
(36) ations it follows immediately that the shapegdh) differs in
the regiony>4 from its shape in the region8y<4. In the
Now the unknown exponeni8 and & are determined by the first region Eq.(37) is valid andp(\) does not depend om,
requirement that all terms in this equation be of the samavhereas in the second region thelependent Eq39) holds.

= APG(X) + 6(4 = y)el(2 = Y AP Er2(x).
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V. INTEGRATION FOR SCALE-FREE DEGREE efficients ofGy(¢) are non-negative and thus they cannot be
DISTRIBUTIONS AND SPECIAL DISTRIBUTIONS viewed anymore as probabilities. Note that the poles in
OF BOND STRENGTHS 4-+v of the last two terms in Eq47) cancel and expanding

Eq. (47) in powers of 4—y we obtain fory=4 a branching
point of the form (1-¢)%In(1-¢) at ¢=1. Furthermore,
from Eq.(30) it follows thatGg(¢) of Eq.(47) leads top,(\)
being normalized to

As shown in Ref[20], the analytical work simplifies con-
siderably for the following distribution of bond strengths:

1
D(w) = P exp(— 1/u), (42)

* 1
R dhp.(N) = <. 49
since then the operat®, Eg. (24), takes the form jo p:() 2 (49)

* 1 A
O= J du— expl- 1/,u)exp{— —xdﬁ] =[1 + xd2]
0 M M

(43)

A. Numerical procedure

To numerically calculate the eigenvalue spectra of scale-
For instance, applying 1)@(3)2(:6‘1 to both sides of Eq. free networks we have performed extensive numerical diago-
(23), one obtains the ordinary second order differential equabalizations of the Laplacians of these structures.
tion We create our structures by the recursive scheme intro-
duced in the second section: For each realization of the struc-
B(X) + AxFh(X) = €7°G1((X)). (44)  ture we first begin with an initial vertex, whose functionality
k is determined according to the probabilitipg derived
from the generating function Eq47). At the open end of
each bond a neWw’-functional vertex is placed, now witkl
distributed according to the probability distributigg given
in Eqg. (3); the latter procedure is then applied recursively to

pot change the fo[rln of the fgncu:?j()‘)’ j\sggnlyEthe f_|rst thek’—1 open bonds of this new vertex. The recursion stops
inverse moment,™) enters Eqs(37) and (39). Equation \hen no open bonds are left, i.e., when all outer vertices

(44) has to be solved subject to the boundary conditions  paye functionalityk’ = 1. Note, however, that due to the lim-
#0)=1 and ¢(=)=0. (45) it_ed time_anql memory resources available for the subsequent
diagonalizations, the total number of bonds has to be re-
In the limit A\ — 0 Eq.(44) can be linearized around the first stricted to some maximum value,,,,. If a given recursion
term ¢o(x) of the asymptotic expansion, E(6). This is  has not stopped before reaching a totalNaf,, bonds we
achieved by insertingb(x) = ¢o(x) + ¢(x) into Eq. (44) and  proceed by closing all remaining open ends ¥ al vertex
keeping only linear terms g, since from Eq(26) we have  and evaluate the properties of this truncated structure. Obvi-
¢ (x)=0O(N\). This results in the inhomogeneous linear equa-ously, this also limits the range of validity of the resulting
tion spectrum. As observed in our previous study], in the
it _ region affected by the truncation the spectrum shows charac-
Axa§¢|(x) +{1-e7Gi(do(X)}i(0) = - )‘X‘ﬁ%(x)' teristic oscillations. To verify this procedure for the trunca-
(46)  tion limit Ny,5=500 used in general in this study, we have
also performed for some of the curves shown in Fig. 4 addi-
Sional diagonalizations usindy,,,=4000. The so obtained
numerical results for logp(\) agree within the symbol size

As noted in Ref.[20], the particular choice oD(w), Eq.
(42), does not change much the smallbehavior ofp()\),
given that in Eqg.(42) the probability for small coupling
strengthsu is exponentially small. In particulaB(«) does

To investigate specific scale-free degree distributions wi
choose the following generating function:

: 1 , ly-3 3 for the whole range covered by tiNg,,,=500 data shown in
Go(¢) = ¢+ 5(1 —A1-)7- 9 y— 4(1 ~¢) Fig. 4 and in fact extend the range of agreement with the
solution of the differential Eq(44) by one order of magni-
2 1 tude.

= _ 1
Y- a-20-p P (D

This form corresponds indeed to a degree distribufpn
which obeys Eq(32); the c value in Eq.(32) is

For the distribution of bond strength of a given structure
we chose either fixed bond strengths=1 or strengthsu
distributed according to Eq42). The connectivity matrixA
with entries weighted by these is, by construction, a real,

2 1 symmetric matrix. For all these matrices we obtained the
c= 5(7_ B(y-2(y-D(A-7) (48) eigenvalues using a combination of the Householder method
and of the tridiagonal QL diagonalization algoritij38,39.
The algebraic choice 06y(¢) given by Eq.(47) reduces We accumulated the eigenvalues of all structures gener-

considerably the effort needed to integrate &af). Further-  ated for specific values of the parameter&ind A, where
more, Eq.(47) can be used in the whole intervak3y<5  eigenvalues stemming from a structure wig monomers
containing the valuey=4 above which regular mean-field are weighted with a factor of 19, as given by Eqs(5) and
exponents of percolation appear. On the other hand, for val9). For each of the data sets shown later in Figs. 1, 3, and 4
ues of y outside the interval 3 y<5 not all expansion co- the total number of structures truncatedNg,,=500 was
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FIG. 1. Density of eigenvalueg(\) in double logarithmic FIG. 2. Density of eigenvalueg(\), obtained from the integra-
scales. Displayed are spectra for the scale-free degree distributigion of Eq. (44) (right hand side of the figuyeand from Eq.(46)
generated byGy(¢), Eq. (47), and random coupling strengths  (left hand sidgfor the same parameter values as in Fig. 1. To render
obeying Eq.(42). Here, y=3.5 is fixed andA is 0 (pentagong this difference clear, we have left out a small region around
0.02(¢), 0.04(V), 0.08(A), 0.16(O), and 0.320]) from above.  log;p\=-3.8.

Lines: numerical solution of Eq44). Symbols: direct diagonaliza-

tion of randomly created structures. classical random graphs with sufficiently fast decaying de-

5% 10’ and for structures truncated #,,,=4000 was 9ree distributionsy,, where heuristic arguments have been

AX10P. given[20,22 for the existence of Lifshitz tails in the density
of states. In the latter situation one should observe the form
VI. RESULTS [19]
In Fig. 1 we display first the density of eigenvalyg3.)
for the degree distributiop, generated bysq(¢), Eq. (47), _ _A)
with y=3.5 and for various values af <0. The random p(A) ~ ex \& , fora—0, (5)

coupling strengthg obey the distribution of Eq42). We
obtainedp()) both through _the numeri(_:al int_egration Of. Eq. fWhereA(A)~A3’2 for A—0. This behavior stems from the
(44) and also through the direct numerical diagonalization o . .
many structure realizations, as described above. As can lfémt. thatsmgll eigenvalues are prqduced by large, quaS|_I|.near
seen, thep(\) obtained by the two methods agree very well €9'0NS: which, however, oceur v'wth'very small_probabllllty.
with each other over a large range, thus supporting our Since fo_r scale-free degree distributions such linear regions
theoretical considerations. The deviations of the curves frong'€ MOt likely to occur, there have to be other types of con-
each other for small are due to the limitations imposed by figurations which lead to an increase in the occurrence of
our direct diagonalization approach; in fact the sharp decagMall €igenvalues. For instance two vertices, each of very
of the numerical results for< 103 is an artifact. The curves 1arge degree, moving against each other produce a very low
of Fig. 1 possess a shoulder at Jgg=-0.7 which is most €igenvalue.
evident for the lowest curve correspondingte 0.32. How- At the percolation threshold =0 we infer from Fig. 2 for
ever, this structure is caused by the cha@&g¢), Eq. (47), small\ an algebraic decay of the form of EGO), with an
and is not specific for scale-free degree distributions. As disexponent a,, which however differs froma;. One has
cussed above, scale-free networks are characterized by thamely a,<a;. Thus close toA=0 we encounter here a
behavior forsmall valuesof \. To investigate the smal  crossover behavior between two algebraic decays with dif-
behavior, we show in Fig. 2(\) for the same values of the ferent powersy; and «,. The scaling Eq(41) suggests that
parametersy andA, but extending to much smaller values of this crossover should take placexat A2*2,
\. In this plot the results below < 1038 are obtained from To determine they dependence af,, we display in Fig. 3
the linearized Eq(46), an approximation which we expect to p(\) in double logarithmic scales fak=0 and for various
be exact in the limit\— 0. In fact, ath\=10"2% where the values ofy. Assuming that foh — O the slopes of the plotted
approximation and the exact curve get together, the relativeurves tend to a constant, say, we infer for vy
error of p(\) amounts to about 1%, which is already hard to=4.5, 4.25, 4, 3.75,3.5, and 3.25 the value&,
observe in the plots. Fak not too close to the percolation =0.017, 0.015, 0.04, 0.113, 0.25, and 0.5, respectively. For
threshold a =0 and for small the slopes of the curves in y>4 we expect to encounter the classical mean-field scaling
the double logarithmic plot of Fig. 2 tend to a constant. Thisfunction; since them(\) tends to a constant for—0 atA
would imply a simple algebraic dependence: =0 [19,20Q, this implies thata,=0 which is in good agree-
« ment with the first two valueg,=0.017 for y=4.5 anda,

p(\) ~ CAN®, for X — 0, (50 =0.015 for y=4.25. Moreover, directly ay=4, we expect
with a positive exponentr; and aA-dependent coefficient possible logarithmic corrections to the power law, EspD),
c(A). This differs from the situation expected to hold on which explains the value,=0.04 which is slightly too large.
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log1op(2)

log1o2

FIG. 3. Density of eigenvalugs{\) in double logarithmic scales
at the percolation thresholil=0 for Gy(¢), Eq.(47) andu obeying
Eq. (42). Here vy is varied, being taken to be=4.5 (pentagons
4.25(0), 4(V), 3.75(A), 3.5(0) and 3.25(J) from above.
Lines: integration of Eq(44). Symbols: direct diagonalization.

For 3< y<4 it turns out that we can reproduce th&epen-
dence ofa, through the relation
4-v

2y-5’
In a similar way, we obtain from the small behavior of
p(\) for A>0 thatay=2y-5 holds.

The v dependence of, can be derived from the scaling
relation Eq.(41) by using the fact that the behavior pf\)
for A>1 is given by the algebraic dependenceptk) for
A<1atA=0,

(52

ap

P(N) = lim AT Bp(NAZ*E A)
A—0
~ ATB(\A?P) 2

= AV Praa2th)\ oz, (53

For this to give a reasonable limit the exponentBw,(2
+B)=0 of A has to vanish and solving this equation fer
proves the relation Eq52). Similarly, the behavior op(\)
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FIG. 4. Density of eigenvalugg(\) at the percolation threshold
A=0 for fixed coupling strengthsy=1 in comparison with the
analytical results fop obeying Eq.(42) (straight line. The sym-
bols show simulation data truncated N, ,,=500 (open symbols
and Ny,,,=4000 (filled symbolsg. The values ofy and A and the
symbol shapes are as in Fig. 3

random matrices, together with the analytical results for the
distribution, Eq.(42), of coupling strengths.

To investigate the range of validity of the scaling law Eq.
(41) we display in double logarithmic scales for fixed
=3.5 in Fig. 5 andy=4.5 in Fig. 6 the quantityp(\,A)
=ABp(NA?*A,A) which tends forA—0 to the scaling
functionp(\) of Eq. (41). In both figures we show curves for
various values oA close toA=0. ForA andA small enough
the curves forp(\,A) should collapse into a single one,
given by the scaling functiop(\) of Eq. (41). In Fig. 5 the
collapse appears roughly forA*<1072 and in Fig. 6 for
AMA3< 1072 In Figs. 5 and 6 the scaling functiofg\) are
given by the envelopes of the curvgé\,A) for different
values of A. These envelopep(\) seem to be monotonic
growing functions. In Fig. »(\) shows for the limiting case
A — 0 the algebraic behavi@i(\) ~ N but in Fig. 6 it is not
possible to observe any algebraic dependence.

In Fig. 6, the functiorip(\) given as a solid line is ob-
tained from the direct integration of E¢37), which scales.

for A<1 can be derived from the algebraic dependence Eqviore generally, fory>4 we obtaing=1; we note that for

(50) of p(\) for A<1 andA >0,
P(N) = lim AT Bp(NAZHE A)
A—0

~ AYFe(A)(NAZF) 1
= ATBraZhg( A\, (54)

By the same arguments as above this leadscta)
~ AP 1@ byt does not fix the exponent,.
As shown by Eqs(39) and(40), the scaling functiof(\)

v>4 all network ensembles lead to the same scaling func-
tion p(\). Note that the derivation of Eq$37) and (40) in
Sec. IV shows that the essential condition for this scaling
function to hold is that the degree distributippdecay faster
than k™. This condition is certainly fulfilled for classical
random graphs, like the bond diluted Cayley tree or the
Erd6s-Rényi random graph.

VII. CONCLUSIONS

of EqQ. (41) should be model independent and therefore

should not depend on the particular choicdddfe), Eq.(42).
In particular, atA=0 a power law with the exponent,

In this work we investigated the eigenvalues of Lapla-
cians of structures belonging to a general type of treelike

should still hold. This is corroborated by Fig. 4, in which we networks, in which the vertex degrees are randomly distrib-

display the density of eigenvalues(\) for fixed bond

uted. The Laplacian is of special interest, since it determines

strengths,u=1, obtained from the direct diagonalization of several, very important dynamic quantities associated with
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FIG. 5. The quantityp(\,A)=A"'p(\A%), for y=3.5 in double FIG. 6. The quantityp(\,A)=p(\A3) for y=4.5 in double loga-
logarithmic scales. The different curves correspond 40 rithmic scales. We show curves fdr=0.01 (diamonds, A=0.02
=0.01, 0.02, 0.04, 0.08, and 0.16 from the right. (squaresand A=0.04(triangles. In addition, we display as a solid

the network. For degree distributioqg with a power law line the exact scaling function obtained by solving E2j).

tail, p,~k™?, we obtainedp(\), the ensemble averaged den-

sity of eigenvalues, based on two different methods. First, in The long time dynamics is governed by the smalbe-

a traditional way, by performing numerical diagonalization havior of p(\). For this we found two algebraic forms\)
techniqueg14,19; second, using the replica method of sta- ~\? and p(\) ~ A%, where the first relation holdbelow
tistical physics. The second approach allows to evaluate thgnd the secondt the percolation threshold. On the basis of
ensemble averaged)) based on an analytical integral equa- the numerical results of the integral equation we conjecture
tion. For largeN domains it turns out that the agreementinat a,;=2y-5 and a,=(4-v)/a; hold. We find that in

between the results obtained by the two methods is vergcale-free networks very small eigenvalues occur with higher
good. probability than in classical random graphs. We conjecture

of special interest is the bghg\{ior pfA) close to the that this finding is due to the existence of highly connected
percolation threshold. Here an infinite cluster appears, and {fo tices.

is known that the exponeny which governs the larg

behavior ofp, affects the critical exponents of the percola-

tion problem[12]. With the help of our integral equation

approach we were able to study the scaling propertigg\of ACKNOWLEDGMENTS

close to the percolation threshold and to determine numeri-

cally the correspondingy-dependent scaling functions. In ~ The support of the DFG, of the Fonds der Chemischen
agreement with Ref[12], we find that in the regiony>4  Industrie, and of the BMBF are gratefully acknowledged. We
one recovers the critical properties of classical randonare much indebted to Professor S. Havlin, Dr. P. Mdller, and

graphs. Professor Y. Holovatch for enlightening discussions.
[1] A. L. Barabasi and R. Albert, Scienc286, 509 (1999. Lett. 85, 4626(2000.
[2] A. L. Barabési, H. Jeong, and R. Albert, Natyt®ndon 401, [11] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.
130(1999. Lett. 86, 3682(2001).
[3] P. Erdés and A. Rényi, iMhe Art of Countingedited by J.  [12] R. Cohen, D. ben-Avraham, and S. Havlin, Phys. Re6@:
SpencerMIT Press, Cambridge, MA, 1973pp. 559-637. 036113(2002.
[4] D. J. Watts and S. H. Strogatz, Natufeondon 393 440 [13] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J.
(1998. Watts, Phys. Rev. Lett85, 5468(2000.
[5] M. E. J. Newman and D. J. Watts, Phys. Rev.6B, 7332 [14] K. I. Goh, B. Kahng, and D. Kim, Phys. Rev. B4, 051903
(1999. (2001).
[6] S. Jespersen, |. M. Sokolov, and A. Blumen, J. Chem. Phys[15] I. J. Farkas, |. Derenyi, A.-L. Barabasi, and T. Vicsek, Phys.
113 7652(2000. Rev. E 64, 026704(2001).
[7] S. Jespersen and A. Blumen, Phys. Rev6E 6270(2000. [16] S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, and A. N.
[8] F. Jasch and A. Blumen, J. Chem. Phy47, 2474(2002. Samukhin, Phys. Rev. B8, 046109(2003.
[9] A. Blumen and F. Jasch, J. Phys. Chem186, 2313(2002. [17] A. Bar-Haim, J. Klafter, and R. Kopelman, J. Am. Chem. Soc.
1

[10] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. 119 6197(1997%).

016112-8



DYNAMICAL SCALING BEHAVIOR OF PERCOLATION... PHYSICAL REVIEW E 70, 016112(2004)

[18] R. Kopelman, M. Shortreed, Z.-Y. Shi, W. Tan, Z. Xu, J. S. Rev. E 67, 061103(2003.
Moore, A. Bar-Haim, and J. Klafter, Phys. Rev. Lel8, 1239 [30] A. A. Gurtovenko and A. Blumen, Macromolecul@$, 3288

(1997). (2002.
[19] F. Jasch, C. von Ferber, and A. Blumen, Phys. ReV6&  [31] M. Molloy and B. Reed, Random Struct. Algorithng; 161
051106(2003. (1095,

[20] K. Broderix, T. Aspelmeier, A. K. Hartmann, and A. Zippelius,
Phys. Rev. E64, 021404(2001).

[21] M. J. Stephen, Phys. Rev. B7, 4444(1978.

[22] G. J. Rodgers and A. J. Bray, Phys. Rev.3B, 3557(1988.

[23] K. Broderix, H. Léwe, P. Miiller, and A. Zippelius, Europhys.

[32] M. Molloy and B. Reed, Combinatorics, Probab. Comptt.
295(1998.

[33] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev.
E 64, 026118(2001).

Lett. 48, 421(1999. [34] M. E. Fisher and J. W. Essam, J. Math. Ph2s609 (1961).
[24] K. Broderix, H. Léwe, P. Miller, and A. Zippelius, Phys. Rev. [35] D. Stauffer, Introduction to Percolation TheoryTaylor and
E 63, 011510(2000. Francis, London, 1985
[25] R. B. Stinchcombe, J. Phys. @, 179 (1974. [36] M. Mezard, G. Parisi, and M. A. Virasor&pin Glass Theory
[26] P. Biswas, R. Kant, and A. Blumen, Macromol. Theory Simul. and BeyondWorld Scientific, Singapore, 1936
9, 56 (2000. [37] P. Bialas and Z. Burda, Phys. Lett. 834, 75 (1996.
[27] P. Biswas, R. Kant, and A. Blumen, J. Chem. Phys4, 2430  [38] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
(2001). terling, Numerical Recipe€Cambridge University Press, Cam-
[28] C. von Ferber and A. Blumen, J. Chem. Phykl6 8616 bridge, England, 1990
(2002. [39] J. H. Wilkinson and C. Reinschjnear Algebra, Handbook for

[29] A. Blumen, A. Jurjiu, T. Koslowski, and C. von Ferber, Phys. Automatic ComputatioSpringer, New York, 197 Vol. 2.

016112-9



